word2vecで遊んでみる

機械学習関連の記事を読みあさっていたところ、オライリーからword2vecによる自然言語処理という書籍が出ていることを知った。ちょっと面白そうだなーと思って、とりあえずword2vecを触ってみることにした。環境はMBA(OS X Yosemite)。

まずは公式サイトからsvn checkoutしてくる。
$ svn checkout http://word2vec.googlecode.com/svn/trunk/
$ cd ./trunk/
$ ls
LICENSE                    demo-word.sh
README.txt                 distance.c
compute-accuracy.c         makefile
demo-analogy.sh            questions-phrases.txt
demo-classes.sh            questions-words.txt
demo-phrase-accuracy.sh    word-analogy.c
demo-phrases.sh            word2phrase.c
demo-train-big-model-v1.sh word2vec.c
demo-word-accuracy.sh
で、make。
$ make
gcc word2vec.c -o word2vec -lm -pthread -O3 -march=native -Wall -funroll-loops -Wno-unused-result
gcc word2phrase.c -o word2phrase -lm -pthread -O3 -march=native -Wall -funroll-loops -Wno-unused-result
gcc distance.c -o distance -lm -pthread -O3 -march=native -Wall -funroll-loops -Wno-unused-result
distance.c:18:10: fatal error: 'malloc.h' file not found
#include
         ^
1 error generated.
make: *** [distance] Error 1
エラーが出た。OS Xだとmallocが/usr/include直下に無いらしい。なので直下にリンク張っておく。
$ ls -alF /usr/include/malloc/malloc.h
-rw-r--r--  1 root  wheel  13706  9 10  2014 /usr/include/malloc/malloc.h
$ sudo ln -s /usr/include/malloc/malloc.h /usr/include/malloc.h
再チャレンジ。今度はうまくいって、実行ファイルが出来上がった。
$ make
$ ls
LICENSE                    demo-classes.sh            demo-word.sh               questions-words.txt        word2vec
README.txt                 demo-phrase-accuracy.sh    distance                   word-analogy               word2vec.c
compute-accuracy           demo-phrases.sh            distance.c                 word-analogy.c
compute-accuracy.c         demo-train-big-model-v1.sh makefile                   word2phrase
demo-analogy.sh            demo-word-accuracy.sh      questions-phrases.txt      word2phrase.c
テストスクリプトを動かしてみる...んだけど、OS Xだとwgetが入ってないので、以下のように修正。
$ vi demo-word.sh
make
if [ ! -e text8 ]; then
### コメント 化
#  wget http://mattmahoney.net/dc/text8.zip -O text8.gz
#  gzip -d text8.gz -f
### 追加
  curl -O http://mattmahoney.net/dc/text8.zip
  unzip text8.zip
###
fi
time ./word2vec -train text8 -output vectors.bin -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 1 -iter 15
./distance vectors.bin
テストスクリプトを実行。
$ ./demo-word.sh
Starting training using file text8
Vocab size: 71291
Words in train file: 16718843
Alpha: 0.000005  Progress: 100.10%  Words/thread/sec: 77.29k
real 14m58.897s
user 54m5.354s
sys 0m18.830s
とりあえずjapanってやってみた。あーなんとなく関連ぽい言葉が出てくる。chinaが高いポイントなのが面白い。
Enter word or sentence (EXIT to break): japan
Word: japan  Position in vocabulary: 582
                                              Word       Cosine distance
------------------------------------------------------------------------
                                            nagoya 0.636266
                                             china 0.630357
                                          japanese 0.626650
                                             chiba 0.619252
                                           shimizu 0.591518
                                             osaka 0.585299
じゃ、僕の名前であるsasakiをやってみると...日本人の苗字が出てきた。
Enter word or sentence (EXIT to break):sasaki
Word: sasaki  Position in vocabulary: 39817
                                              Word       Cosine distance
------------------------------------------------------------------------
                                             inoue 0.601103
                                             isshu 0.597284
                                            suzuki 0.590220
                                         matsumoto 0.587990
                                             saigo 0.571434
じゃ、appleは...というと、フルーツでは無くメーカーのほうが出てきた。
Enter word or sentence (EXIT to break): apple
Word: apple  Position in vocabulary: 1221
                                              Word       Cosine distance
------------------------------------------------------------------------
                                         macintosh 0.685635
                                              imac 0.604292
                                              iigs 0.594525
                                        appleworks 0.588855
                                         quickdraw 0.571981
                                           wozniak 0.570726
今回使ったサンプルデータであるtext8.zipは、1行の長い文章で構成されたデータになっている。何かの論文でも繋げたものだろうか?日本語の文章を解析する場合にはmecabで分かち書きにして結合してあげる必要があるみたい。


  入門 自然言語処理
入門 自然言語処理

このブログの人気の投稿

転職のお知らせ

40代の減量戦略 〜体重-14kg、体脂肪率-12%を実現した具体的な方法〜

45歳になりました